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Abstract

Advances in next-generation sequencing technologies enable routine genome sequencing, 

generating millions of short reads. A crucial step for full genome analysis is the de novo assembly, 

and currently, performance of different assembly methods is measured by a metric called N50. 

However, the N50 value can produce skewed, inaccurate results when complex data are analyzed, 

especially for viral and microbial datasets. To provide a better assessment of assembly output, we 

developed a new metric called U50. The U50 identifies unique, target-specific contigs by using a 

reference genome as baseline, aiming at circumventing some limitations that are inherent to the 

N50 metric. Specifically, the U50 program removes overlapping sequence of multiple contigs by 

utilizing a mask array, so the performance of the assembly is only measured by unique contigs. We 

compared simulated and real datasets by using U50 and N50, and our results demonstrated that U50 

has the following advantages over N50: (1) reducing erroneously large N50 values due to a poor 

assembly, (2) eliminating overinflated N50 values caused by large measurements from overlapping 

contigs, (3) eliminating diminished N50 values caused by an abundance of small contigs, and (4) 

allowing comparisons across different platforms or samples based on the new percentage-based 

metric UG50%. The use of the U50 metric allows for a more accurate measure of assembly 

performance by analyzing only the unique, non-overlapping contigs. In addition, most viral and 

microbial sequencing have high background noise (i.e., host and other non-targets), which 

contributes to having a skewed, misrepresented N50 value—this is corrected by U50. Also, the 

UG50% can be used to compare assembly results from different samples or studies, the cross-

comparisons of which cannot be performed with N50.
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1. INTRODUCTION

Next-Generation Sequencing (NGS) is becoming the laboratory standard for genome 

sequencing, pathogen discovery, and advanced molecular detection. NGS generates a 

tremendous amount of short sequence reads, and one of the most common ways to analyze 

these data is by de novo assembly. Unfortunately, genome assembly remains a very difficult 

problem, which is made more challenging by shorter reads, non-uniform coverage of the 

target, and unreliable long-range linking information (Miller et al. 2010). Assemblies are 

measured by the size and accuracy of their contigs and scaffolds (Miller et al. 2010). 

Currently, the performance of a de novo assembly is measured by a metric called N50.

The N50 value is a measurement of the assembly quality of NGS data by determining how 

well an assembler performs in forming contigs and scaffolds. N50 is defined as a weighted 

median statistic such that 50% of the entire assembly is contained in contigs that are equal to 

or larger than this value. Though assembly accuracy is extremely hard to measure, the N50 

value has thus far been the most common metric to use for genomic assembly completeness. 

Other metrics can be used in determining overall assembly performance, but they are all 

based on the N50 statistic. Generally, it is assumed that the higher the N50 value, the more 

accurate the assembly.

Although calculation of the N50 is a common practice among studies analyzing NGS 

datasets, the N50 value has several major disadvantages that can sometimes produce 

inaccurate results (Scott 2014). First, a poor assembly can force unrelated reads and contigs 

into supercontigs, resulting in an erroneously large N50. Second, using N50 and NG50 (see 

Table 1 for definitions) for metagenomics, microbial or viral datasets are problematic 

because a small fraction of the reads are of the targeted genome (Naccache et al. 2014) and 

because of the background reads (mostly of cellular origin) skewing the results. Third, N50 

does not account for resulting contigs that are non-unique or overlapping; these overlapping 

contigs can sometimes greatly inflate the N50 value and, hence, miscalculate true 

performance of the NGS assembly. Finally, comparing all assemblies based solely on the 

N50 is impossible, because N50 is a number-based metric that is calculated from total contig 

length and it does not allow a fair comparison across different platforms or samples (Miller 

et al. 2010). Therefore, an alternative formula is needed.

This article describes a new metric called U50, as well as a computer algorithm that can 

calculate U50 automatically for any NGS data, for applications mainly targeting viral and 

microbial datasets. Using contig sequences that are generated by an assembly program as 

input, the U50 algorithm identifies unique regions from those contigs, then applies a brute 

force, cumulative sum method to calculate the U50 metric. Our U50 metric aims at 

circumventing the limitations of N50 by identifying unique, target-specific contigs by using a 

reference sequence as baseline.

2. IMPLEMENTATION

2.1. Definitions

See Table 1.
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2.2. Algorithm

The U50 program requires Python to be installed. Two input files are needed from the user: a 

multi-FASTA file containing all the contigs and a FASTA file including only the reference 

genome. First, the user can run the provided bash shell script to convert the two input files 

into a sorted BED file, using Bowtie2, SAMtools, and BEDtools (Table 2). The U50 script 

will then compare the sorted BED file listing all the contig coordinates to the reference 

genome, using the U50 calculation and mask array as described later. The Quality 

Assessment Tool for Genome Assemblies (QUAST) program is not necessary for the U50 

program to execute, but the added output information from QUAST helps make informed 

decisions about the quality of the assembly when combined with the U50 output data.

During execution, the U50 program first sorts contigs by their lengths, starting from the 

longest to the shortest. Starting with the longest contig, the start and stop coordinates are 

used to compare it with the reference sequence at those specific coordinate positions. The 

coordinates are used to align the contig to the reference and find overlapping regions. If an 

overlap is identified, then those coordinates are removed and only the coordinates that reflect 

a unique contig are retained. To maintain order and position of all contigs, a mask array is 

used.

2.3. Using a mask array to determine unique regions

We constructed a mask array (Fig. 1) to be used as a switch to find overlapping regions. The 

length of the mask array was assigned to be the length of the input reference sequence. The 

mask array acts as a running tally that keeps track of the unique coordinates, where “1” 

denotes coordinates that already have a mapped contig, and “0” denotes coordinates that 

have yet to be covered. The initial mask array was assigned all zeros in memory, because no 

contigs have been mapped yet.

Starting from the first contig in the sorted list, the contig coordinate positions directly align 

with the index positions of the mask array. This is because both the BED file and the array 

have a zero-based counting system.

When the mask array is compared with each of the contigs in order, the contig coordinates 

are first aligned with the mask array index. When a contig coordinate occupies a mask array 

index containing “0” in its current stage, the contig coordinate is denoted as a unique region; 

then, the mask array is updated as “1” in this coordinate. On the other hand, when a mask 

array index contains a “1,” the contig coordinate is discarded as an overlapping region. After 

performing all contig alignments, if a “0” is still present in the mask array, this denotes a gap 

in coverage. All unique contigs are then retained for the U50 calculation.

The same calculation used for the N50 is performed on the unique contigs, thus producing 

the U50 value. A brute force, cumulative sum method is used to find the N50, NG50, L50, 

U50, UG50, and UL50 values.

2.4. N50 calculation

Step 1: The first step for calculating N50 involves ordering contigs by their lengths from the 

longest (c1) to the shortest (cn).
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Step 2: Calculate the cutoff value by summing all contigs and multiplying by the threshold 

percentage (x); examples include: N25, N50, N75, N90, etc. This example is for N50, so the 

threshold percentage is 50%.

that is, for N50

Step 3: Starting from the longest contig, the lengths of each contig are summed, until this 

running sum is greater than or equal to the Nx cutoff (e.g., for N50, it would be 50% of the 

total length of all contigs in the assembly).

Step 4: The N50 of the assembly is the length of the shortest contig at the first instance 

where the running sum becomes greater than or equal to the N50 cutoff.

whereas L50 = the length of contig number L

NG50 follows the same steps except that Step 2 is modified to the following:

2.5. U50 calculation

Our U50 metric aims at circumventing the limitations of N50 by identifying unique, target-

specific contigs by using a reference sequence as baseline.

Step 1: The first step for calculating U50 involves ordering contigs by their lengths from the 

longest (c1) to the shortest (cn).

Step 2: All contigs are mapped to a reference genome, starting with c1. Using the mask 

array, only the unique portions of each contig are preserved (c′), and all other regions and 
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non-mapping contigs are removed. Then, these modified contigs are sorted by length from 

the longest (c′1) to the shortest (c′n).

Step 3: From the modified list of contigs, the summation of all contigs is found and 

multiplied by the threshold percentage. This example is for U50, so the threshold percentage 

is 50%.

c′ = modified contigs with overlapping regions removed, and all non-target contigs 

removed.

Step 4: Starting from the longest contig, the lengths of each contig are summed, until this 

running sum is greater than or equal to the U50 cutoff (50% of the total length of all contigs 

in the assembly).

Step 5: The U50 of the assembly is the length of the shortest contig at the first instance 

where the running sum becomes greater than or equal to the U50 cutoff.

whereas UL50 = the length of contig number L

UG50 follows the same steps except:

Step 3 is modified to the following:

UG50% follows the same steps as UG50 with one additional step:

Step 6 involves calculating the UG50%.

The output contains four files in total: AssemblyStatistics.txt, contigs.txt, gaps.txt, and 

overlaps.txt. The AssemblyStatistics.txt file will show the standard output that prints to the 

terminal screen. The contigs.txt file shows the contig coordinates and a count of the unique 

base positions that a particular contig covers. The overlaps.txt file shows the index position 
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of an overlap and which contig that overlap belongs to. The gaps.txt file shows the index 

position of any gaps in coverage.

3. RESULTS

3.1. U50 implementation with theoretical datasets

We constructed six different types of theoretical assembly results (A–F), increasing in 

complexity (Fig. 2), to compare the values for N50, NG50, U50, UG50, and UG50%. For the 

assemblies that generate long contigs with little overlap or gaps (e.g., A–C), N50 appears 

approximately equal to the U50 value. The U50 metric really excels in situations where 

assemblies generate short, fragmented contigs (e.g., E and F), skewing the N50 downward, or 

non-target-specific long contigs (e.g, D) that skew the N50 upward.

Figure 2A is the simplest example. When a de novo assembly produces one contig that is the 

length of the genome, then the N50, NG50, U50, and UG50 all return the same values.

Figure 2B simulates an assembly producing two contigs totaling the length of the genome, 

with a single overlapping region. The N50, NG50, U50, and UG50 values are identical, even 

after removing the overlapping region to calculate U50 and UG50.

Figure 2C simulates an assembly producing multiple overlapping contigs totaling the length 

of the genome. This is often observed in earlier de Bruijn graph assemblers that produce 

hundreds or thousands of overlapping small contigs (Deng et al. 2015), skewing the result 

toward a lower N50. By removing the short overlaps, the U50 estimate corrects for the 

underestimation caused by the small contigs.

Figure 2D simulates a scenario where the final assembly contains long non-targeted 

sequences. This is exemplified by sequencing bacterial and/or viral genomes with a high 

background of host cellular nucleic acid. In this example, the N50 is overinflated, 

demonstrated by having an N50 that is much longer than the targeted genome. The U50 is a 

better reflection of the actual assembly performance.

Figure 2E simulates a scenario where the final assembly contains numerous small contigs. 

The over-abundance of these small contigs generally skews the N50 toward the smaller 

contig size. When removing the overlapping regions, the U50 is a better representation of the 

assembly performance.

Figure 2F simulates the most realistic example of a de novo assembly’s contig output. There 

are duplicated contigs, overlapping regions, and a gap region. There are varying sizes of 

contigs, and many contain overlapping regions, which skew the N50 downward. Once these 

duplicated contigs and overlapping regions are removed, the U50 provides a slightly better 

representation of the assembly performance.

Generally, it is assumed that the higher the N50, the better the assembly. However, it is 

important to keep in mind that a poor assembly that has forced unrelated reads and contigs 

into scaffolds can have an erroneously large N50. Using the U50 metric to discount any reads 
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that do not belong to the given reference genome may minimize the effects of overabundant 

small, fragmented contigs.

3.2. U50 implementation with published and in-house datasets

To demonstrate the U50 algorithm, various published and in-house datasets were compared, 

including four Illumina MiSeq bacteria samples that were analyzed in the GAGE-B paper 

(Magoc et al. 2013), four enterovirus D68 samples, three other types of picornaviruses, one 

Black Queen cell virus, one hepatitis E virus, one crAssphage, and one rhabdovirus Bas-

Congo.

All 15 samples were assembled by using four different de novo assemblers: ABySS v.1.9 

(Simpson et al. 2009); SOAPdenovo2 v.r240 (Luo et al. 2012); SPAdes v. 3.6.2 (Bankevich 

et al. 2012; Nurk et al. 2013); and Velvet v.1.2.10 (Zerbino and Birney 2008). Only the 

assembly output contig files were available from the four bacteria samples from the GAGE-

B dataset, so the same approach was used for the other 11 samples. The UG50% was used to 

evaluate and compare samples across all assemblers. Our results show that the SPAdes 

assembler consistently generates a higher UG50% compared with the other three assemblers, 

suggesting that the SPAdes assembler generates the longest contigs and outperforms the 

others.

For most viral samples, the UG50% performance metric for SPAdes is consistently more 

than 90%, showing that it can produce full or near full genomes. In contrast, the UG50% 

performance metric for Velvet is always lower than 20%, indicating that the largest contig 

would not be more than one fifth of the genome, similar to previous findings (Magoc et al. 

2013). For SOAPdenovo2 and ABySS, the performance varied from sample to sample, with 

the UG50% ranging from <1% to 100%. For the bacterial samples, a similar trend is 

apparent. The UG50% for SPAdes is higher than 12%, whereas the UG50% for the other 

three assemblers is lower than 5%.

For many samples, the U50 is within 10% of the N50. SOAPdenovo2 and Velvet have the 

largest differences when comparing the N50 and U50 values, because these assemblers 

produce many small contigs, as portrayed in Figure 2E. This typically results in the N50 

value being skewed toward the smaller contig size. By removing the overlapping regions, the 

U50 value is much higher and would be a more accurate estimate (see picornaviruses 

SOAPdenovo2 and Velvet results for EV-C105 and EV-C117 in Figure 3). In these cases, the 

U50 is a better estimate compared with the N50 for SOAPdenovo2 and Velvet because of 

removal of the non-target specific contigs.

When the assembler can generate long contigs covering almost the entire length of the 

reference genome, then the N50 and the U50 values are identical (see examples Figure 2A 

and B in the simulated data and the SPAdes results for EV-D68, EV-C105, and EV-C117). 

For the remaining of the SPAdes results, the N50 and U50 values are very close. The slight 

difference is most likely due to the removal of the duplicated and overlapping reads.

Noticeably, the NG50 value calculated for all Black Queen virus assemblies, hepatitis E virus 

assemblies, and the SPAdes assembly for crAssphage returned values that are longer than 
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the reference genome. This is because NG50 estimates the reference genome length based on 

the input contigs themselves (Ghodsi et al. 2013), not on an input reference genome. This 

exemplifies that the overinflated NG50 results can be inaccurate and misleading.

3.3. Availability of data and material

The datasets generated during and/or analyzed during the current study and the U50 python 

script are available in the U50 Github repository, https://github.com/CDCgov/U50.

4. DISCUSSION AND CONCLUSIONS

In this study, we describe the U50 metric as a tool to evaluate assembly performance, aiming 

at circumventing some limitations that are inherent to the N50 metric. The core spirit of U50 

is in removing noise and finding those unique regions that align to a targeted reference 

genome. Major advantages include the following: (1) reducing erroneously large N50 values 

due to a poor assembly, (2) eliminating overinflated N50 values caused by large 

measurements from overlapping contigs, (3) eliminating diminished N50 values caused by an 

abundance of small contigs, and (4) allowing comparisons across different platforms or 

samples based on the percentage-based metric UG50%.

The U50 assembly metric will be particularly useful for viral and microbial sequencing of 

samples with high background noise. This “needle-in-a-haystack” problem proves 

cumbersome when trying to assemble such small viral contigs into complete genomes with 

exponentially larger non-target contigs. The reads often do not overlap sufficiently to allow 

the de novo assembler to properly form long contigs (Kostic et al. 2011), and teasing out the 

true viral contigs from the rest is challenging. The U50 metric allows for only the proper 

viral contigs to be used when calculating the assembly performance, as opposed to using all 

of the contigs.

Despite the advantages, there are some limitations that prevent usage of the U50 under all 

circumstances. First, U50 can only be calculated if a reference is available. Therefore, this is 

not a metric to use during the assembling of unique prototype genomes. Second, because the 

overlapping regions are removed for the calculation, U50 does not account for coverage of 

the genome.

Since only unique, non-overlapping contigs are used in the calculation of U50, the sum of the 

unique contig length is usually less than the sum of the original contigs. In the instance 

where all the unique contigs do not sum to the percentage threshold of 50%, the U50 

program returns a “0.” This is indicative of the input contigs not covering 50% of the 

reference genome. In such cases, we recommend using a lower threshold such as U10 or U25. 

These will typically return a result, but the overall assembly when aligned to a reference is 

still poor.

The U50 assembly metric is a tool to be used in conjunction with the commonly used N50, 

L50, and NG50 metrics. When used in unison, it gives a clearer picture of the performance 

and accuracy of the overall assembly. The UG50%, as a percentage-based metric, can be 

used to compare assembly results from different samples or studies. The use of this new 
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metric and its software could facilitate a better comparison of assemblies, especially with 

viral and microbial datasets.
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FIG. 1. 
The use of mask array in U50. A schematic diagram demonstrating the use of a mask array to 

identify the unique contig length for two contigs.

Castro and Ng Page 11

J Comput Biol. Author manuscript; available in PMC 2018 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 2. 
Simulated output of different assemblies, with the N50, NG50, U50, UG50, and UG50% 

values calculated. Blue denotes the reference sequence, black denotes a unique contig, red 

denotes an overlapping region of a contig, and green denotes a non-target contig.
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FIG. 3. 
Comparison of the N50, U50, NG50, UG50, and UG50% for different bacterial and viral 

datasets using four different assemblers. Contigs for the bacteria dataset were retrievedfrom 

Magoc et al. (2013), whereas all other contigs were generated in-house. All datasets were 

sequenced by using the Illumina MiSeq.
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Table 1

N50 and U50 Assembly Metric Definitions

N50 Metrics U50 Metrics

N50 The length of the smallest 
contig such that 50% of the 
sum of all contigs is contained 
in contigs of size N50 or larger.

U50 The length of the smallest contig such that 50% of the sum of all unique, 
target-specific contigs is contained in contigs of size U50 or larger.

L50 [LG50] The number of contigs whose 
length sum produces N50 

[NG50].

UL50 [ULG50] The number of contigs whose length sum produces U50 [UG50].

NG50 The length of the smallest 
contig such that 50% of the 
reference genome is contained 
in contigs of size NG50 or 
larger. NG50 estimates the 
genome size based on the input 
contig lengths, not a reference 
genome as input.

UG50 The length of the smallest contig such that 50% of the reference genome is 
contained in unique, target-specific contigs of size UG50 or larger.

UG50%
The estimated coverage length of the UG50 in direct relation to the length of 

the reference genome. 
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Table 2

Software Used in the U50 Package

Program/language Version Application Execution order

Bowtie2 2.2.4 Maps contigs to reference, creating an SAM file
(Langmead and Salzberg 2012)

1

SAMtools 1.2 Converts SAM to BAM (Li 2011; Li et al. 2009) 2

BEDTools 2.17.0 Converts BAM to BED (Quinlan and Hall 2010) 3

Python
(BioPython)

2.7.3
1.66

Executes the U50 program (Cock et al. 2009; Lutz 2013) 4

QUAST 2.3 Calculates assembly metrics (N50, N75, L50, GC%, etc.) based on the input contig file 
(Gurevich et al. 2013)

5
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